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ABSTRACT:

Vine-plot mapping and monitoring are crucial issues in land management,particularly for areas where vineyards are dominant, like in
some French regions. In this context, the availability of an automatic tool forvineyard detection and characterization would be very
useful. Due to the periodic patterns induced by this culture, frequency analysis appears to be a very suited tool for vineyard detection
in aerial images. A recursive process using Fast Fourier Transform algorithm has been developed to meet this need. This results in vine
plot segmentation, with contours in polygonal form and characterization with accurate estimation of interrow width and row orientation.
To foster large-scale applications, tests and validation have been carriedout on standard very high spatial resolution remote-sensing
data. More than 71% of adults, mechanically trained vines have been well detected with 44% having a good contour extraction and
27% beeing grouped by two or three.

1 INTRODUCTION

The considerable increase in digital technologies makes it possi-
ble to automatically analyze images, but also to understand them
by providing high-level information on their content. Concur-
rently, a such considerable increase is observed in the availabil-
ity of very high spatial resolution (VHSR) remote-sensing data.
This offers a lot of new potential applications: the shape or the
spatial structure of observed objects is becoming more distin-
guishable, providing greater possibilities for discrimination and
characterization, notably in the agricultural domain. Various type
of vegetation can thus be distinguished according to their spatial
patterns (cereal crops, forests, orchards . . . ). In this context, au-
tomatic analysis methods could be developed to build or update
geographical databases for land management.

However, because they deal with spatial structures or shape, these
new applications also require new image processing methods.
Several shape-model based approaches can thus be found in the
literature, especially for building detection (Garcin et al., 2001)
(Segl et al., 2003) or isolated trees detection (Barbezat et al.,
1996). For forest identification, various textural approaches based
on co-occurrence matrices are proposed such as (Franklin et al.,
2000) or (Moskal, 2002).

Accurate digital mapping of vineyards for wine-growing regions
such as Languedoc-Roussillon (France) could be extremely use-
ful for many reasons. These maps can be integrated within Geo-
graphical Information Systems (GIS) which can be used by wine-
grower cooperatives to improve the monitoring of quality com-
pliance in areas registered in the list of Controlled Origin De-
nomination. The management of pollution, erosion and flood
risks is another field that can take advantage of these maps. In-
deed, these risks, depending on culture and soil surface condition,
are worsened by mechanization and intensive cropping practices
(Wassenaar et al., 2005). User demand usually concerns 1) locat-
ing vine plots and 2) identifying some characteristics that can be
connected to cropping practices or crop quality (interrow width,
orientation of rows, presence of grass between rows . . . ).

Most vineyard related studies using remote sensing data meet the
second requirement by detecting vine rows (Bobillet et al., 2003),
or by characterizing training mode (Wassenaar et al., 2002) or
foliar density (Hall et al., 2003) for previously delimited plots.

They emphasize the relevance of textural analysis applied to sub-
metric spatial resolution images. Indeed, according to the Shannon-
Nyquist theorem, periodic patterns resulting from the spatial ar-
rangement of vine plants (often in lines or grid), become percep-
tible with a spatial resolution that is at least twice as small as
the pattern period. In many wine-growing regions, the minimum
distance between two vine rows, can be as small as 1 m; con-
sequently, image spatial resolution should be lower than 0.5 m.
Because of this periodic organization, a vine pattern can roughly
be assimilated to a local planar wave of a given spatial frequency
and orientation. Therefore, frequency analysis appears as a suit-
able approach for vine detection.

Wavelet analysis presented in (Ranchin et al., 2001) is applied
to 25 cm resolution images for vine/non-vine pixel classification.
Using a plot basis validation, 78 % of plots were accurately clas-
sified; but this approach is complex and needs significant user
intervention. A Fourier Transform based analysis should be more
straightforward and quite as effective since this tool is perfectly
suited for oriented and periodic texture detection. Basically, the
Fourier spectrum of a vine plot image contains two or four main
amplitude peaks, the position of which being directly related to
vine row orientation and interrow width. Wassenaar (Wassenaar
et al., 2002) successfully used it for vine/non-vine classification
and characterization on 25 cm resolution images. This method
also gave a very precise estimation of interrow width and row
orientation. In (Chanussot et al., 2005), a Radon transform is ap-
plied to the Fourier spectrum of a 2 cm resolution image which
allows a more precise evaluation of row orientation, used in a
further algorithm of missing trees detection.

However, in the examples above, a preliminary delineation of the
vine plots is required. We thus address the problem of vineyard
detection, segmentation and characterization in VHSR aerial im-
ages, without any parcel plan availability. An original recursive
scheme is proposed to meet this need. The idea is to isolate
each individual plot by selecting the corresponding frequencies
in the Fourier spectrum, using a specific Gabor filter. To foster
large-scale applications, this process has been applied to standard
VHSR aerial images. In the following part, the theoretical aspects
of the method are presented, as well as its recursive implementa-
tion. Then, results obtained on a 200 ha study area, presenting
a large set of vineyard types and conditions, are given and dis-
cussed.



2 STUDY AREA AND DATA

Figure 1: Zoom on the study area and the manual segmentation.

In the study area, like in most of vine-growing regions, two main
patterns can be observed on aerial images according to vine train-
ing mode:

• Grid pattern: about a quarter of the vineyards considered in
this study is trained in ‘goblet’. This old method of vine
training involves no wire or other system of support: vine
stocks are planted according to a grid pattern, often square,
with approximately 1.5 m× 1.5 m spacing in the study area
but sometime up to 3 m spacing in dry regions.

• Line pattern: most of the recent vineyards are trained using
horizontal wires to which the fruiting shoots are tied. Spac-
ing separating two wires is higher than spacing between vine
stocks guided by the same wire (often 1 m× 2.5 m spac-
ing in the study area), which leads to row patterns. More
adapted to mechanization, this training mode named trellis,
is mainly used.

For tests and validation, data acquisition was made on a 200 ha
study area (see figure 1), during the first week of July 2005, when
foliar development was such that both vine and soil were visible
on aerial images.

Photographs in natural colors (Red, Green and Blue) were ac-
quired by the ‘Avion jaune’ company using a digital camera aboard
an Ultra Light Motorized (U.L.M.). They were geometrically cor-
rected, mosaicked and resampled for a 50 cm resolution. How-
ever, the original image required for FFT computation must be
in gray levels and, although the three channels have been tested,
only the red one is used thereafter, since it provides higher con-
trast between vine and soil even covered by grass.

Ground-truth information was collected at the same time as image
acquisition, especially concerning land use and vine pattern (grid
or line). Interrow width (pattern period) and orientation were ob-
tained by precise on-screen measurements.

3 SELECTED APPROACH

The main idea is to isolate each individual plot by selecting the
corresponding frequencies in the Fourier spectrum, using a spe-
cific Gabor filter.

3.1 Fourier Transform of a vine plot image

Fourier theory states that almost any signal, including images,
can be expressed as a sum of sinusoidal waves oscillating at dif-
ferent frequencies. The Fourier Transform amplitude (or Fourier
spectrum) of an imageI, can be represented in the frequency do-
main as another imageFI. In the conventional representation,
this image is symmetric with respect to its center, which con-
tains the average ofI, i.e. the amplitude of the null frequency
F0. Each position of pixel corresponds to a particular spatial fre-
quencyf increasing the further it is from center fromf = 0 to
f = ±0.5. Its value codes the amplitude of Fourier spectrum,
which depends on the presence of the corresponding frequency
in the original imageI.

Since vineyard patterns on aerial images are periodical and ori-
ented, they induce very located peaks of amplitude in Fourier
spectrum (see figure 2).

a) b)

c) d)

Figure 2: Fourier Transforms of vineyard images. a) row pattern
of a treillis vine and b) its Fourier transform on which can be
seen two high peaks symmetric with respect to the center. c) Grid
pattern of a goblet vine and d) its Fourier transform on which four
peaks are present at 90˚.

Three characteristics can be deduced from the value and positions
of these peaks:

1. peak value can be seen as an estimation of the vine presence
in the original image.

2. The angle formed by vector(center, peak) with the horizon-
tal line, determines the wave direction in a polar coordinate
system, which is perpendicular to the pattern directioni.e.
the vine row orientationθ.

3. The distancer between one peak and the center, is the fre-
quencyf of the corresponding wave (f ∈ [0, 0.5]). This
value is directly linked to the pattern periodT in pixel i.e.
the vine interrow width, byf = 1/T .



The horizontal and vertical lines intersecting at the spectrum cen-
ter are due to the non-periodicity of the original image: they
represent the frequency components of the image edge discon-
tinuities. These edge-effect peaks, which could mask plot peak
detection, can be avoided by applying a Hanning window to the
original image before Fourier transform computation (see figure
3). Note that, due to the gray-level attenuation, the modified im-
age is used only for peak detection, the original one being taken
again for the filtering process itself.

a) b)

c) d)

Figure 3: Hanning window effect: a) original image, b) FFT cal-
culation without Hanning window, c) original image multiplied
by the Hanning window, d) FFT calculation with Hanning win-
dow.

3.2 Gabor Filters

Gabor filters, introduced by Dennis Gabor in the forties (Gabor,
1946), have been widely used, both as a fundamental wavelet
decomposition function, and for texture segmentation (Jain and
Farrokhnia, 1991), (Weldon et al., 1996).

In the spatial domain, a Gabor filter is defined by an impulse
response, which is a complex sinusoid with frequency(u0, v0),
modulated by a Gaussian envelopg(x, y):

h(x, y) = g(x, y) · e−2πj(u0x+v0y) (1)

where :

g(x, y) =
1

2πσ2
· e

−
x
2+y

2

2σ2 (2)

In the frequency domain, the Fourier transform ofh(x, y) is a
Gaussian function (Fourier transform ofg(x, y)) centered on the
frequency(u0, v0):

FT (h(x, y)) = H(u, v) = G(u − u0, v − v0) (3)

where:
G(u, v) = e−2π2σ2(u2+v2) (4)

Therefore, the Gabor filter acts as a Gaussian band-pass filter,
which can be used to select a given range of frequencies around
a particular amplitude peak centered on(u0, v0) in the Fourier
spectrum. The parameterσ is the filter width. A large value ofσ
will decrease the accuracy of plot edge location while a too small

value, which corresponds to a large filter radius in the spectral
domain, will decrease the filter selectivity. A value of about eight
pixels, leading to a filter support width of about 2% of the to-
tal frequency range in the spectral domain, appears to be a good
trade-off. It corresponds to a plot edge location inaccuracy of a
few meters.

The filtering process can be applied directly in the Fourier do-
main:

TF (O(u, v)) = TF (I(u, v)) · H(u, v) (5)

whereTF (I(u, v)) is the Fourier transform ofI(x, y).

The final result imageO(x, y) is then obtained as the inverse
Fourier transform ofTF (O(u, v)).

Because the filter functionH(u, v) is not symmetric, the result-
ing image O(x,y) has complex pixel values (only one amplitude
peak in the original Fourier spectrum is preserved, instead of the
two symmetric ones issued from the real imageI(x, y)). This
property is useful in the present case: by simply computing the
modulus of the complex imageO(x, y), we directly obtain the
amplitude of the selected sinusoidal waves. By comparison, a
real output image with real sinusoidal undulations (issued from a
symmetric filtering) would have required a supplementary crest
detection step to achieve vineyard plot segmentation. In a last
step, the modulus image is subject to a binary thresholding to
separate vine plots from background.

Figure 4 shows two examples of Gabor filtered outputs corre-
sponding to two different amplitude peaks in the Fourier spec-
trum of the original image. As we can see, this filtering process
appears to be very efficient for vine plot segmentation, provided
that it is followed by a thresholding step and a binary object enu-
meration.

P1 P2

P1

P2

a) b)

c) d)

Figure 4: Gabor filtering. a) Original image b) its Fourier trans-
form c) Peak selection using Gabor filters d) modulus of the out-
put complex image for both peaks.

4 ALGORITHM

4.1 Pre-processing

To increase algorithm robustness, an initial normalization step
is designed, ensuring that any original image will have approx-
imately the same amplitude of luminance variation from row to
inter-row in the vineyard areas. Each pixel value is divided by the
local ‘textural contrast’ around it, defined from Haralick’s con-
trast feature (Haralick et al., 1973). If this one is too low, the
corresponding pixel is set to null.



The Gabor filtering process described above must be applied on
limited size images (typically500 × 500 pixels) both for com-
putational reasons and to get exploitable Fourier spectra. When
dealing with large aerial images (typically5000 × 5000 pixels),
an image partitioning is used. As a result, a set of adjacent sub-
images is obtained which will be processed successively. In the
following, we only consider such sub-images, and will see how
to recover plots that have been split by the partitioning process.
Moreover, as the Hanning window tends to decrease image con-
trast near its edges, adjacent sub-images issued from the initial
partitioning step must present a significant overlap to ensure that
every portion of the original image is examined under its optimal
contrast.

4.2 Filtering process

Gabor filter is applied successively on the various main ampli-
tude peaks in the Fourier spectrum. Thanks to the original im-
age normalization, and to the filter selectivity, a very simple bi-
nary thresholding can be applied to the filtered output image, the
choice of the threshold value being not critical. Thus, we ob-
tain a binary image, in which every object is supposed to be a
vine plot with the same characteristics of orientation and inter-
row width (given by the current Gabor filter center). However,
when several plots have been found using the same Gabor filter,
all of them may not have exactly the same characteristics but very
close ones. Some plots may also be incomplete in the current
original sub-image, if it has been split by the initial partitioning
process.

The following procedure is thus followed:

1. The original image Fourier spectrum is computed, and only
the highest peak is searched for within potential frequen-
cies of vineyard (given by minimum and maximum interrow
width encountered).

2. A Gabor filter, centered on this peak is processed, followed
by Fourier inversion and binary thresholding. For each plot
found at this step:

• a new sub-image is created where all pixels but those
of the candidate plot are painted in black, so that only
its corresponding amplitude peak will appear in the
Fourier spectrum. A new Gabor filtering is then ap-
plied around this unique peak and the FFT inversion
is carried out on the original image to obtain a possi-
bly more closely matching vine plot

• if the resulting binary object touches a sub-image edge,
a new sub-image is built around it with extended mar-
gins, and the whole process is reiterated. By this way,
we are guaranteed to recover the complete plot in one
or several iterations.

3. when the corresponding plots have been completely recov-
ered, they are listed and erased from the original image by
painting them in black.

4. The process is reiterated from 1.

This process is stopped in 2. before listing, when the associated
plot area is lower than a predefined value given by user.

4.3 Recursive implementation

From the various steps described above, it appears that the same
filtering and binary analysis scheme is applied many times, start-
ing either from the initial sub-images, or from the current plot
candidate, by building a new sub-image around it. Moreover, the
iteration number is not predictable (the sub-image issued from a
current binary object can itself generate an undetermined number
of new object apparitions). A recursive implementation is then
particularly suited. The basic recursive function, starting from a
binary object, includes sub-image building, Gabor setting and fil-
tering, and sub-object analysis, this last one generating new func-
tion calls if some sub-objects touch the current sub-image edges.
The function terminates when no new sub-object with significant
area is detected.

This recursive function is summarized in figure 5. It is initially
applied on ‘virtual’ plots issued from the partitioning (and thus
considered as incomplete). In order to avoid multiple detections
of the same vine plot, a global list of the already detected plots
is maintained all along the process, and used to erase the corre-
sponding zones, if any, in every new sub-image before process-
ing.

Input:
extensible

bounding box
around current
binary object

Process again
for other

frequencies

Store the object as a plot
Erase from input image to
avoid multiple detections

NO

For each detected object: does
it touch the bounding box?

P1

P2

Does it remain parts of
the input binary object?

YES
NO

END

YES

Incomplete plot
Process again with

bounding
box extension

Peak filtering

P1
P2

FFT

P2

P1

P2

Figure 5: Recursive process applied on each binary object.



5 RESULTS

The main goal of the presented process is the plot contours de-
lineation. Therefore, a plot basis validation has been performed,
comparing automatically and manually segmented plots accord-
ing to their overlapping rate. Eight different cases have been de-
fined (see figure 6):

1. Good segmentation: the overlapping surface of real and au-
tomatically segmented plots is higher than 70%.

2. Over-segmentation: several plots are automatically segmented
in one real plot.

3. Under-segmentation: one automatically segmented plot in-
cludes several real plots.

4. Partial segmentation: only one part of the plot is detected

5. Large segmentation: the automatically segmented plot over-
flows onto other plots.

6. Missing segmentation: vine plots not automatically segmented

7. Extra segmentation: non-vine plots automatically segmented
as vine.

8. Other cases

1. Good 2. Over 3. Under

5. Larger

4. Partial

6. Missing 7. Extra 8. Other

Automatic
segmentation

Manual
segmentation

Common
surface

Figure 6: Different cases for segmentation results.

The results obtained according to this classification are given in
table 1.

Segmentation
type

Real plots
(except for 7)

Corresponding
surface

1. Good 41 (36%) 27.5 (36%)
2. Over 1 (0.9%) 2 (2.5%)
3. Under 24 (21%) 16 (20.8%)
4. Partial 4 (3.5%) 4.2 (5.4%)
5. Larger 3 (2.7%) 1.4 (1.8%)
6. Missing 40 (35%) 25 (33%)
7. Extra 2 (0.2%)
8. Other 1 (0.9%) 0.4 (0.5%)
Total (except 7) 114 (100%) 76.5 (100%)

Table 1: Results in number of plots and corresponding surface,
according to different segmentation configurations.

Three main types of classification can be considered: well seg-
mented plots (36%), under-segmented plots (21%), and missing
plots (35%).

Figure 7, shows some examples of good detection, correspond-
ing to well segmented and under-segmented plots. The latter
case typically correspond to the grouping of neighboring plots
that have the same row orientation and interrow width, and are

only separated by a narrow road or a ditch. Some of them are
not spatially separated, and only differ by the soil surface condi-
tion between rows (figure 7b) or by some characteristics undis-
tinguishable in aerial images, such as age or height (figure 7c).
This kind of segmentation error can nevertheless potentially be
managed by further processing, as discussed below.

a. b. c.

Figure 7: Examples of good detection: (a) Good segmentation;
(b) 2 regrouped plots which differ by the soil surface condition
between rows; (c) 2 regrouped plots for which difference is nearly
undistinguishable on aerial photograph.

a b c

Figure 8: Examples of non-segmented plots: a. young vine
whose rows are hardly visible; b. old goblet vine smaller than
0.2ha, with an interrow width of 1.6m; c. vine with a lot of miss-
ing vine-trees and a ‘1 row out of 2’ pattern.

A more problematic figure is the ratio of missing plots (35%),
though it has, most of the time, an easily comprehensible rea-
son. The first cause of non-segmentation is that the vine is too
young (typically less than 3 years old). Vegetation is thus not
enough developed for the rows to be visible on aerial photographs
(figure 8a). Consequently, only one young vine out of fifteen is
correctly segmented, two are under-segmented and all the others
are not segmented at all. The second cause of non-segmentation
is a small interrow width. This characteristic has a significant
consequence concerning the vine training. Indeed, an interrow
width lower than about 1.7 m prevents from a mechanized work
(owing to the size of tractor or grape harvesting machine). The
related vines are thus manually trained and vine-trees are often
not pruned in rows, leaving the vegetation growing over inter-
row. This leads to a low visibility of soil between rows which is
worsened by the interrow width itself, closed to detection limit
according to image resolution. Moreover, manually trained vines
are generally older, smaller and sometimes less maintained (fig-
ure 8b). Other missing detection can be due to:

• an alternated treatment between interrows: the main pattern
period is then twice or fourth the interrow width, leading to
a reduced peak amplitude in the relevant frequency range
(figure 8c);

• a high number of missing vine trees (figure 8c);

• a too small size (4 real plots were not detected because their
area was lower than the threshold value, 1000 m2).

Moreover, the ratio of missing detections falls to about 17%,
when considering adult vines with reasonable size and interrow
width. Indeed, 100% of small vines (less than 1000 m2) are not



detected, 80% of young vine (less than 3 years old) and 55% of
narrow vines (with an interrow width lower than 1.7 m).

Other figures in table 1 mainly concern plots that present hetero-
geneities due to bad cultivation conditions (poor foliage develop-
ment, missing trees, etc.). This generally leads to partial segmen-
tation, or larger segmentation if combined with plot grouping:
this last case concerns 2.7% of vine plots but only 1.8% of vine
cultivated surface, indicating it mainly affects small plots.

6 CONCLUSIONS AND FUTURE WORK

The proposed recursive approach has proved its efficiency for
vineyard detection and characterization in many ways. While
most of detection studies - not only concerning vineyards - pro-
vide a pixel classification, the main originality of this method
is that results are directly available in a polygonal form, thanks
to the automatic segmentation process. Another significant ad-
vantage is that largely available data can be used. Indeed, the
method does not requires any multi-spectral information, and can
be successfully applied on the red channel of an aerial image.
Moreover, since the appropriate spatial resolution is linked to the
researched pattern period, a poorer resolution could be used in
many other vine-growing regions, especially dry regions such as
in Spain where interrow widths are up to 3 m. Then, satellite im-
ages, such as those provided by Ikonos or Quickbird, could be
used.

Using frequency analysis, very precise information of row orien-
tation and interrow width can be deduced from the peak position
in the Fourier spectrum. Accuracy of these characteristics de-
pends on the quantity of information in the original image,i.e. on
the number of rows in the vine plot, but is generally very good.

In terms of performance, the present study has nevertheless shown
some limitations, especially concerning under-segmented plots
and missing detections. The case of under-segmentation, which
consists in grouping neighboring plots with very similar charac-
teristics, can be considered as a side effect of a generally poor
accuracy in plot edge definition. This poor accuracy is inherent
to any segmentation method, including this one, relying on tex-
tural pattern detection: a minimal neighborhood is required to
detect such patterns, leading to a limited spatial resolution of the
segmentation. For this reason, we do believe that a further step
based on individual vine row analysis is necessary (and proba-
bly sufficient) to overcome this type of problems. It is presently
under development. In addition to the utility of characterization
as such, accurate estimations of interrow width and row orienta-
tion as given by the present method are thus very useful in such a
further step requiring individual row detection.

The cases of missing detection are more problematic, in the sense
that no further improvement step can be envisaged. As seen
above, they concern very poorly visible vine plots (mainly young
or badly maintained ones) and therefore show a limitation of
aerial imaging approach itself.

Finally, another limit of this method is that it has to be applied on
linear row patterns; important modifications would be needed to
apply such a method on level line vineyards such as there are in
Portugal.
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